
Transformers – Part 2
DL4DS – Spring 2024

DS598 B1 Gardos – Understanding Deep Learning, Other Content Cited 1

https://udlbook.github.io/udlbook/

Recap From Part 1

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer

Models
• Encoder

2

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models

3

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models
• Encoder
• Decoder
• Encoder-Decoder

4

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models
• Encoder
• Decoder
• Encoder-Decoder

5

3 Types of Transformer Models

1. Encoder – transforms text embeddings into representations that
support variety of tasks (e.g. sentiment analysis, classification)
v Model Example: BERT

2. Decoder – predicts the next token to continue the input text (e.g.
ChatGPT, AI assistants)
v Model Example: GPT4, GPT4

3. Encoder-Decoder – used in sequence-to-sequence tasks, where one
text string is converted to another (e.g. machine translation)

6

Encoder Model Example: BERT (2019)
Bidirectional Encoder Representations from Transformers

• Hyperparameters
• 30,000 token vocabulary
• 1024-dimensional word embeddings
• 24x transformer layers
• 16 heads in self-attention mechanism
• 4096 hidden units in middle of MLP

• ~340 million parameters
• Pre-trained in a self-supervised manner,
• then can be adapted to task with one additional layer and fine-tuned

7

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.”
arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

https://doi.org/10.48550/arXiv.1810.04805

Encoder Pre-Training

• A small percentage of input embedding replaced with a generic <mask>
token
• Predict missing token from output embeddings
• Added linear layer and softmax to generate probabilities over vocabulary
• Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)

8

XT

Special <cls> token
used for aggregate
sequence
representation for
classification

Encoder Fine-Tuning

• Extra layer(s) appended to convert output vectors to desired
output format
• 3rd Example: Text span prediction -- predict start and end

location of answer to a question in passage of Wikipedia, see
https://rajpurkar.github.io/SQuAD-explorer/

9

Sentiment
Analysis

Named Entity
Recognition (NER)

<cls> token position

https://rajpurkar.github.io/SQuAD-explorer/

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models
• Encoder
• Decoder
• Encoder-Decoder

10

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
• One purpose: generate the next token in a sequence
• By constructing an autoregressive model

11T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
• One purpose: generate the next token in a sequence
• By constructing an autoregressive model
• Factors the probability of the sentence:
Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠	𝑓𝑢𝑛 =
	 Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ×Pr 𝑑𝑒𝑒𝑝	 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	 ×
	 Pr 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝)	×
	 Pr 𝑖𝑠	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	×
	 Pr 𝑓𝑢𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠

12T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
• One purpose: generate the next token in a sequence
• By constructing an autoregressive model
• Factors the probability of the sentence:
Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠	𝑓𝑢𝑛 =
	 Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ×Pr 𝑑𝑒𝑒𝑝	 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	 ×
	 Pr 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝)	×
	 Pr 𝑖𝑠	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	×
	 Pr 𝑓𝑢𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠
• More formally: Autoregressive model

Pr 𝑡!, 𝑡", … , 𝑡# = Pr(𝑡!)8
$%"

#

Pr 𝑡$ 𝑡!, 𝑡", … , 𝑡$&!)

13T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder: Masked Self-Attention

• During training we want to maximize the log probability of the input text
under the autoregressive model
• We want to make sure the model doesn’t “cheat” during training by

looking ahead at the next token
• Hence we mask the self attention weights corresponding to current and

right context to negative infinity

14

Masked Self-Attention

15

X
X

X

Mask right context self-attention weights to zero

Masked Self-Attention

16

−∞

−∞

−∞

−∞−∞

−∞

Decoder: Training Process – Teacher Forcing

17

• During training we compute loss between ground truth label input and
generated output

• We do not feed output back to input è ”Teacher Forcing”

loss(it, it) +	loss(takes, takes)	+	…

Gr
ou

nd
 T

ru
th

 L
ab

el
s

Generated

Decoder: Text Generation (Generative AI)

18

Ignore

Pr
om

pt

Generated

• Prompt with token string “<start> It takes great”
• Generate next token for the sequence by some strategy

Decoder: Text Generation (Generative AI)

19

Ignore

Pr
om

pt

Generated

Ge
ne

ra
te

d

• Feed the output back into input

Decoder: Text Generation (Generative AI)

20

Ignore

Pr
om

pt
Ge

ne
ra

te
d Generated

• Feed the output back into input

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models
• Encoder
• Decoder
• Encoder-Decoder

21

Encoder-Decoder Model

• Used for machine translation, which is a sequence-to-sequence task

22https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Encoder Decoder Model

• The transformer layer in the decoder of
the encoder-decoder model has an
extra stage
• (As opposed to a standalone decoder

i.e. GPT)
• Attends to the input of the encoder

with cross attention using Keys and
Values from the output of the encoder
• Shown here on original diagram from

“Attention is all you need” paper

23

Encoder

Decoder

Encoder Decoder Model Training
• Target translation is fed to

the decoder
• “Teacher forcing” is used,

in that, regardless of
decoder output, the
correct word is provided
the decoder

24

Encoder Decoder Model Inference
• TODO: Show inference

progression

25

Cross-Attention

26

Keys and Values come from the last stage of
the encoder

27

Which model flavor do you use for Named
Entity Recognition?

ⓘ Start presenting to display the poll results on this slide.

28

Which model flavor do you use for
language translation?

ⓘ Start presenting to display the poll results on this slide.

29

Which model flavor do you use for generating text,
question answering, AI assistant?

ⓘ Start presenting to display the poll results on this slide.

Next Token Selection
Recall: output is a 𝒱 ×1 vector of probabilities

• How should we pick the next token in decoder
and encoder-decoder models?

• Trade off between accuracy and diversity

30

Next Token Selection
Recall: output is a 𝒱 ×1 vector of probabilities

• Greedy selection
• Top-K
• Nucleus
• Beam search

31

Next Token Selection – Greedy
Pick most likely token (greedy)

Simple to implement. Just take the max().

Might pick first token 𝑦!, but then there is no 𝑦" where Pr 𝑦" 𝑦!)
is high.
Result is generic and predictable. Same output for a given input
context.

32

Next Token Selection -- Sampling
Sample from the probability distribution

Get a bit more diversity in the output

Will occasionally sample from the long tail of the distribution,
producing some unlikely word combinations

33

Next Token Selection – Top K Sampling

1. Generate the probability vector as usual
2. Sort tokens by likelihood
3. Discard all but top k most probable words
4. Renormalize the probabilities to be valid probability distribution

(e.g. sum to 1)
5. Sample from the new distribution

Diversifies word selection
Depends on the distribution. Could be low variance, reducing diversity

34

Next Token Selection – Nucleus Sampling

Instead of keeping top-k, keep the top p percent of the
probability mass.

Choose from the smallest set from the vocabulary such
that

Diversifies word selection with less dependence on nature
of distribution.
Depends on the distribution. Could be low variance,
reducing diversity

35

Next Token Selection – Beam Search
Commonly used in machine
translation
Maintain multiple output choices
and then choose best combinations
later via tree search
V = {yes, ok, <eos>}
We want to maximize 𝑝 𝑡", 𝑡#, 𝑡$.

Greedy: 0.5×0.4×1.0 = 0.20
Optimal: 0.4×0.7×1.0 = 0.28

36D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search
But we can’t exhaustively search the entire vocabulary
Keep k tokens (beam width) at each step

37D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search

38D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Keep k tokens at each step

E.g. k = 2

Prune to k at each step

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search

39D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Calculated with log
probabilities

and add

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection

• Greedy selection
• Top-K
• Nucleus
• Beam search

40

Jupyter notebook exploring each of these will be
assigned after spring break

Transformers for Long Sequences

41

Context Length of LLMs

42

Model Context Length

Llama 2 32K

GPT4 32K

GPT-4 Turbo 128K

Claude 2.1 200K

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

Attention Matrix

43

N

N

Scales quadratically with
sequence length N, e.g. N2.

Masked Attention

44

N

N

~1/2 the interactions but
still scales quadratically

Use Convolutional Structure in Attention

45

Encoder Decoder

Dilated Convolutional Structures

46

Encoder Decoder

Encoder Decoder

Have some tokens interact globally

47

EncoderDecoder

Tokenization and Word Embedding

48

NLP Preprocessing Pipeline

49

Tokenizer Learned
Embeddings Transformer

Preprocessing: Tokenization and Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>

Tokenizer

Tokenizer chooses input “units”, e.g. words, sub-words, characters via tokenizer
training

In tokenizer training, commonly occurring substrings are greedily merged based on
their frequency, starting with character pairs

50

Encode Decode
character (e.g.

Unicode)
strings

token
IDs

character (e.g.
Unicode)

strings

Tokenization Issues
“A lot of the issues that may look like issues with the neural network architecture actually trace back to tokenization. Here are
just a few examples” – Andrej Karpathy

• Why can't LLM spell words? Tokenization.
• Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
• Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
• Why is LLM bad at simple arithmetic? Tokenization.
• Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
• Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
• What is this weird warning I get about a "trailing whitespace"? Tokenization.
• Why did the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
• Why should I prefer to use YAML over JSON with LLMs? Tokenization.
• Why is LLM not actually end-to-end language modeling? Tokenization.
• What is the real root of suffering? Tokenization.

51https://github.com/karpathy/minbpe/blob/master/lecture.md

https://github.com/karpathy/minbpe/blob/master/lecture.md

Unicode Standard and UTF-8
• Unicode – variable length character encoding standard. currently defines 149,813

characters and 161 scripts, including emoji, symbols, etc.
• Unicode Codepoint – can represent up to 17×2-. = 1,114,112 entries. e.g.

U+0000 – U+10FFFF in hexadecimal
• Unicode Transformation Standard (e.g. UTF-8) – is a variable length encoding

using one to four bytes
• First 128 chars same as ASCII

52

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Covers ASCII

Basic Multilingual Plane including Chinese, Japanese and Korean characters

Covers remainder of almost all Latin-script alphabets

Emoji, historic scripts, math symbols

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Tokenizer
Two common tokenizers:
• Byte Pair Encoding (BPE) – Used by OpenAI GPT2, GPT4, etc.
• The BPE algorithm is "byte-level" because it runs on UTF-8 encoded strings.
• This algorithm was popularized for LLMs by the GPT-2 paper and the

associated GPT-2 code release from OpenAI. Sennrich et al. 2015 is cited as
the original reference for the use of BPE in NLP applications. Today, all
modern LLMs (e.g. GPT, Llama, Mistral) use this algorithm to train their
tokenizers.*

• sentencepiece
• (e.g. Llama, Mistral) use sentencepiece instead. Primary difference being that

sentencepiece runs BPE directly on Unicode code points instead of on UTF-8
encoded bytes.

53* https://github.com/karpathy/minbpe/tree/master

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://github.com/openai/gpt-2
https://arxiv.org/abs/1508.07909
https://github.com/google/sentencepiece
https://github.com/karpathy/minbpe/tree/master

BPE Pseudocode
Initialize vocabulary with individual characters in
the text and their frequencies
While desired vocabulary size not reached:
 Identify the most frequent pair of adjacent
 tokens/characters in the vocabulary
 Merge this pair to form a new token
 Update the vocabulary with this new token
 Recalculate frequencies of all tokens including
 the new token
Return the final vocabulary

54

Enforce a Token Split Pattern

• Do not allow tokens to merge across certain characters or patterns
• Common contraction endings: ‘ll, ‘ve, ‘re
• Match words with a leading space
• Match numeric sequences
• carriage returns, new lines

55

GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}|
?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+"""

GPT2_SPLIT_PATTERN = r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+|
?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""

GPT4 Tokenizer

56
https://tiktokenizer.vercel.app/

cl100k_base is the GPT4 tokenizer

https://tiktokenizer.vercel.app/

GPT2 Tokenizer

57
https://tiktokenizer.vercel.app/

You can see some issues with the
GPT2 tokenizer with respect to
python code

https://tiktokenizer.vercel.app/

GPT4 Tokenizer

58
https://tiktokenizer.vercel.app/

Issues are improved with GPT4
tokenizer

https://tiktokenizer.vercel.app/

59

Byte Pair Encoding (BPE) Example

60

Byte Pair Encoding (BPE) Example

61

Byte Pair Encoding (BPE) Example

62

Byte Pair Encoding (BPE) Example

63

Byte Pair Encoding (BPE) Example

64

Generally # of tokens increases and
then starts decreasing after
continuing to merge tokens

Learned Embeddings

• After the tokenizer, you have an updated ”vocabulary” indexed by token ID
• Next step is to translate the token into an embedding vector
• Translation is done via a linear layer which is typically learned with the rest of the

transformer model

• Special layer definition, likely to exploit sparsity of input

65

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer
<Some text string>

self.embedding = nn.Embedding(vocab_size, embedding_dim)

Embeddings Output

”One hot encoding”

66

N 𝒱

In this example, we are
assuming a token is simply a
complete word

• Typical embedding size, D, is 1024
• Typical vocabulary size, 𝒱 , is 30,000
• So 30M parameters just for this matrix!

Next set of Jupyter Notebook assignments

• Not due till after break
• will likely release in the next day or two

Øself-attention
Ømulti-head self-attention
Øtokenization
Ødecoding strategies

67

After the break
• Image Transformers
• Multimodal Transformers
• RAG pattern
• Training and Fine-Tuning

Transformers
• …

68

Fe
ed

ba
ck

ChatGPT

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

