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Recap From Part 1

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer 

Models
• Encoder
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3 Types of Transformer Models

1. Encoder – transforms text embeddings into representations that 
support variety of tasks (e.g. sentiment analysis, classification)
v Model Example: BERT

2. Decoder – predicts the next token to continue the input text (e.g. 
ChatGPT, AI assistants)
v Model Example: GPT4, GPT4

3. Encoder-Decoder – used in sequence-to-sequence tasks, where one 
text string is converted to another (e.g. machine translation)
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Encoder Model Example: BERT (2019)
Bidirectional Encoder Representations from Transformers

• Hyperparameters
• 30,000 token vocabulary
• 1024-dimensional word embeddings
• 24x transformer layers
• 16 heads in self-attention mechanism
• 4096 hidden units in middle of MLP

• ~340 million parameters
• Pre-trained in a self-supervised manner, 
• then can be adapted to task with one additional layer and fine-tuned
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J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” 
arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

https://doi.org/10.48550/arXiv.1810.04805


Encoder Pre-Training

• A small percentage of input embedding replaced with a generic <mask> 
token
• Predict missing token from output embeddings
• Added linear layer and softmax to generate probabilities over vocabulary
• Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)
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XT

Special <cls> token 
used for aggregate 
sequence 
representation for 
classification



Encoder Fine-Tuning

• Extra layer(s) appended to convert output vectors to desired 
output format
• 3rd Example: Text span prediction -- predict start and end 

location of answer to a question in passage of Wikipedia, see 
https://rajpurkar.github.io/SQuAD-explorer/ 
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Sentiment 
Analysis

Named Entity 
Recognition (NER)

<cls> token position

https://rajpurkar.github.io/SQuAD-explorer/
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Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
• One purpose: generate the next token in a sequence
• By constructing an autoregressive model

11T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165


Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
• One purpose: generate the next token in a sequence
• By constructing an autoregressive model
• Factors the probability of the sentence: 
Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠	𝑓𝑢𝑛 = 
	 Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ×Pr 𝑑𝑒𝑒𝑝	 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	 ×
	 Pr 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝)	×
	 Pr 𝑖𝑠	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	×
	 Pr 𝑓𝑢𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠   

12T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165


Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
• One purpose: generate the next token in a sequence
• By constructing an autoregressive model
• Factors the probability of the sentence: 
Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠	𝑓𝑢𝑛 = 
	 Pr 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ×Pr 𝑑𝑒𝑒𝑝	 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	 ×
	 Pr 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝)	×
	 Pr 𝑖𝑠	 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)	×
	 Pr 𝑓𝑢𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑒𝑒𝑝	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑠   
• More formally: Autoregressive model

Pr 𝑡!, 𝑡", … , 𝑡# = Pr(𝑡!)8
$%"

#

Pr 𝑡$ 𝑡!, 𝑡", … , 𝑡$&!)

13T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165


Decoder: Masked Self-Attention

• During training we want to maximize the log probability of the input text 
under the autoregressive model
• We want to make sure the model doesn’t “cheat” during training by 

looking ahead at the next token
• Hence we mask the self attention weights corresponding to current and 

right context to negative infinity
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Masked Self-Attention
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Masked Self-Attention
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Decoder: Training Process – Teacher Forcing
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• During training we compute loss between ground truth label input and 
generated output

• We do not feed output back to input è ”Teacher Forcing”

loss(it, it) +	loss(takes, takes)	+	…
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Decoder: Text Generation (Generative AI)
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• Prompt with token string “<start> It takes great”
• Generate next token for the sequence by some strategy



Decoder: Text Generation (Generative AI)
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Decoder: Text Generation (Generative AI)
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Encoder-Decoder Model

• Used for machine translation, which is a sequence-to-sequence task

22https://jalammar.github.io/illustrated-transformer/ 

https://jalammar.github.io/illustrated-transformer/


Encoder Decoder Model

• The transformer layer in the decoder of 
the encoder-decoder model has an 
extra stage
• (As opposed to a standalone decoder 

i.e. GPT)
• Attends to the input of the encoder 

with cross attention using Keys and 
Values from the output of the encoder
• Shown here on original diagram from 

“Attention is all you need” paper

23

Encoder

Decoder



Encoder Decoder Model Training
• Target translation is fed to 

the decoder
• “Teacher forcing” is used, 

in that, regardless of 
decoder output, the 
correct word is provided 
the decoder
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Encoder Decoder Model Inference
• TODO: Show inference 

progression
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Cross-Attention

26

Keys and Values come from the last stage of 
the encoder



27

Which model flavor do you use for Named 
Entity Recognition?

ⓘ Start presenting to display the poll results on this slide.
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Which model flavor do you use for 
language translation?

ⓘ Start presenting to display the poll results on this slide.
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Which model flavor do you use for generating text, 
question answering, AI assistant?

ⓘ Start presenting to display the poll results on this slide.



Next Token Selection
Recall: output is a 𝒱 ×1 vector of probabilities

• How should we pick the next token in decoder 
and encoder-decoder models?

• Trade off between accuracy and diversity

30



Next Token Selection
Recall: output is a 𝒱 ×1 vector of probabilities

• Greedy selection
• Top-K
• Nucleus
• Beam search
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Next Token Selection – Greedy 
Pick most likely token (greedy)

Simple to implement. Just take the max().

Might pick first token 𝑦!, but then there is no 𝑦" where Pr 𝑦" 𝑦!) 
is high. 
Result is generic and predictable. Same output for a given input 
context.
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Next Token Selection -- Sampling
Sample from the probability distribution

Get a bit more diversity in the output

Will occasionally sample from the long tail of the distribution, 
producing some unlikely word combinations

33



Next Token Selection – Top K Sampling

1. Generate the probability vector as usual
2. Sort tokens by likelihood
3. Discard all but top k most probable words
4. Renormalize the probabilities to be valid probability distribution 

(e.g. sum to 1)
5. Sample from the new distribution

Diversifies word selection
Depends on the distribution. Could be low variance, reducing diversity
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Next Token Selection – Nucleus Sampling

Instead of keeping top-k, keep the top p percent of the 
probability mass.

Choose from the smallest set from the vocabulary such 
that

Diversifies word selection with less dependence on nature 
of distribution.
Depends on the distribution. Could be low variance, 
reducing diversity
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Next Token Selection – Beam Search
Commonly used in machine 
translation
Maintain multiple output choices 
and then choose best combinations 
later via tree search
V = {yes, ok, <eos>}
We want to maximize 𝑝 𝑡", 𝑡#, 𝑡$ .

Greedy: 0.5×0.4×1.0 = 0.20
Optimal: 0.4×0.7×1.0 = 0.28

36D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection – Beam Search
But we can’t exhaustively search the entire vocabulary
Keep k tokens (beam width) at each step

37D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection – Beam Search

38D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

Keep k tokens at each step

E.g. k = 2

Prune to k at each step

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection – Beam Search

39D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

Calculated with log 
probabilities

and add

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection

• Greedy selection
• Top-K
• Nucleus
• Beam search

40

Jupyter notebook exploring each of these will be 
assigned after spring break



Transformers for Long Sequences
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Context Length of LLMs

42

Model Context Length

Llama 2 32K

GPT4 32K

GPT-4 Turbo 128K

Claude 2.1 200K

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb 

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb


Attention Matrix
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N

N

Scales quadratically with 
sequence length N, e.g. N2.



Masked Attention
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N

N

~1/2 the interactions but 
still scales quadratically



Use Convolutional Structure in Attention

45

Encoder Decoder



Dilated Convolutional Structures
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Encoder Decoder

Encoder Decoder



Have some tokens interact globally
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EncoderDecoder



Tokenization and Word Embedding
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NLP Preprocessing Pipeline

49

Tokenizer Learned
Embeddings Transformer

Preprocessing: Tokenization and Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>



Tokenizer

Tokenizer chooses input “units”, e.g. words, sub-words, characters via tokenizer 
training

In tokenizer training, commonly occurring substrings are greedily merged based on 
their frequency, starting with character pairs

50

Encode Decode
character (e.g. 

Unicode) 
strings

token 
IDs

character (e.g. 
Unicode) 

strings



Tokenization Issues
“A lot of the issues that may look like issues with the neural network architecture actually trace back to tokenization. Here are 
just a few examples” – Andrej Karpathy

• Why can't LLM spell words? Tokenization.
• Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
• Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
• Why is LLM bad at simple arithmetic? Tokenization.
• Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
• Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
• What is this weird warning I get about a "trailing whitespace"? Tokenization.
• Why did the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
• Why should I prefer to use YAML over JSON with LLMs? Tokenization.
• Why is LLM not actually end-to-end language modeling? Tokenization.
• What is the real root of suffering? Tokenization.

51https://github.com/karpathy/minbpe/blob/master/lecture.md 

https://github.com/karpathy/minbpe/blob/master/lecture.md


Unicode Standard and UTF-8
• Unicode – variable length character encoding standard. currently defines 149,813 

characters and 161 scripts, including emoji, symbols, etc.
• Unicode Codepoint – can represent up to 17×2-. = 1,114,112 entries. e.g. 

U+0000 – U+10FFFF in hexadecimal
• Unicode Transformation Standard (e.g. UTF-8) – is a variable length encoding 

using one to four bytes
• First 128 chars same as ASCII

52

https://en.wikipedia.org/wiki/Unicode 
https://en.wikipedia.org/wiki/UTF-8 

Covers ASCII

Basic Multilingual Plane including Chinese, Japanese and Korean characters

Covers remainder of almost all Latin-script alphabets

Emoji, historic scripts, math symbols

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8


Tokenizer
Two common tokenizers:
• Byte Pair Encoding (BPE) – Used by OpenAI GPT2, GPT4, etc.
• The BPE algorithm is "byte-level" because it runs on UTF-8 encoded strings.
• This algorithm was popularized for LLMs by the GPT-2 paper and the 

associated GPT-2 code release from OpenAI. Sennrich et al. 2015 is cited as 
the original reference for the use of BPE in NLP applications. Today, all 
modern LLMs (e.g. GPT, Llama, Mistral) use this algorithm to train their 
tokenizers.*

• sentencepiece
• (e.g. Llama, Mistral) use sentencepiece instead. Primary difference being that 

sentencepiece runs BPE directly on Unicode code points instead of on UTF-8 
encoded bytes.

53* https://github.com/karpathy/minbpe/tree/master 

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://github.com/openai/gpt-2
https://arxiv.org/abs/1508.07909
https://github.com/google/sentencepiece
https://github.com/karpathy/minbpe/tree/master


BPE Pseudocode
Initialize vocabulary with individual characters in 
the text and their frequencies
While desired vocabulary size not reached:
    Identify the most frequent pair of adjacent    
    tokens/characters in the vocabulary
    Merge this pair to form a new token
    Update the vocabulary with this new token
    Recalculate frequencies of all tokens including 
    the new token
Return the final vocabulary
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Enforce a Token Split Pattern

• Do not allow tokens to merge across certain characters or patterns
• Common contraction endings: ‘ll, ‘ve, ‘re
• Match words with a leading space
• Match numeric sequences
• carriage returns, new lines

55

GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}| 
?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+"""

GPT2_SPLIT_PATTERN = r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+| 
?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""



GPT4 Tokenizer

56
https://tiktokenizer.vercel.app/ 

cl100k_base is the GPT4 tokenizer

https://tiktokenizer.vercel.app/


GPT2 Tokenizer

57
https://tiktokenizer.vercel.app/ 

You can see some issues with the 
GPT2 tokenizer with respect to 
python code

https://tiktokenizer.vercel.app/


GPT4 Tokenizer
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https://tiktokenizer.vercel.app/ 

Issues are improved with GPT4 
tokenizer

https://tiktokenizer.vercel.app/
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Byte Pair Encoding (BPE) Example
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Byte Pair Encoding (BPE) Example
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Byte Pair Encoding (BPE) Example
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Byte Pair Encoding (BPE) Example
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Byte Pair Encoding (BPE) Example
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Generally # of tokens increases and 
then starts decreasing after 
continuing to merge tokens



Learned Embeddings

• After the tokenizer, you have an updated ”vocabulary” indexed by token ID
• Next step is to translate the token into an embedding vector
• Translation is done via a linear layer which is typically learned with the rest of the 

transformer model

• Special layer definition, likely to exploit sparsity of input

65

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer
<Some text string>

self.embedding = nn.Embedding(vocab_size, embedding_dim)



Embeddings Output

”One hot encoding”
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N 𝒱

In this example, we are 
assuming a token is simply a 
complete word

• Typical embedding size, D, is 1024
• Typical vocabulary size, 𝒱  , is 30,000
• So 30M parameters just for this matrix!



Next set of Jupyter Notebook assignments

• Not due till after break
• will likely release in the next day or two

Øself-attention
Ømulti-head self-attention
Øtokenization
Ødecoding strategies

67



After the break
• Image Transformers
• Multimodal Transformers
• RAG pattern
• Training and Fine-Tuning 

Transformers
• …

68
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ChatGPT

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

